
Thorin, Partial Evaluation, and AnyDSL
Russel Arbore



AnyDSL: A Partial Evaluation Framework for Programming High-Performance Libraries 
Shallow Embedding of DSLs via Online Partial Evaluation
A Graph-Based Higher-Order Intermediate Representation 

https://compilers.cs.uni-saarland.de/papers/anydsl.pdf
https://compilers.cs.uni-saarland.de/papers/gpce15.pdf
https://compilers.cs.uni-saarland.de/papers/lkh15_cgo.pdf


Thorin



Modern programming is functional*

● Almost all modern languages 
support some form of functional 
programming

● Manifests as higher order functions 
(HOFs)

● Implemented as closures
● Imperative languages must convert 

closures into normal functions and 
(possibly dynamically allocated) 
structs



Can we represent this in the IR?

Imperative IRs

- What is typically used for imperative-first 
languages

- Can’t represent HOFs directly
- Closures must be lowered into function 

pointer + struct representation
- This can sometimes be optimized through 

inlining and scalar replacement of 
aggregates

- Cannot reason about recursive HOFs

Functional IRs

- Can reason about HOFs explicitly
- Not obvious how to lower a C++ or Rust 

into a functional IR
- Employs scope nesting to bind variables

- Tricky to manipulate due to need to 
rename variables during transformations



What about graph representations?



What about graph representations?

Neither of these are interprocedural!



Thorin IR

● Use CPS to represent all control flow 
(branches, function calls, longjmp)

● Implicit scope nesting - graph based
○ All “names” are graph edges

●



SSA vs. CPS vs. Thorin



Lambda Mangling

● In CPS, there is lambda lifting and dropping
○ Lifting removes a free parameter of a let function by adding an explicit argument
○ Dropping removes an explicit argument of a function by adding a free parameter from a caller

● In Thorin, only explicit modification is adding / removing an explicit parameter



Lambda Mangling



Lambda Mangling



Code Generation

● Treat first order functions like basic blocks
● Treat second order functions as “returning” functions
● Lower as follows:

○ All “returning” functions become normal SSA functions
■ Calls to the second order parameter become returns

○ Each basic block like functions becomes a basic block
■ Each parameter turns into a phi node

○ Calls to “returning” functions become normal calls, calls to basic block functions become 
jumps

■ Value that would’ve been passed to “returning” function’s continuation becomes the 
return value





Partial Evaluation



What is partial evaluation?

● Evaluate static parts of a program, given some fixed static parameters
● Use PE results to specialize other parts of the program
● May diverge…

○ True divergence: the program actually doesn’t terminate
○ Hidden divergence: dynamically unreachable code is divergent, put PE may reach it
○ Induced divergence: the partial evaluator is “too greedy”



DSLs: deep vs. shallow embedding

Deep Embedding

● Compiler for DSL is written in host 
language

● Code for DSL is a data structure in host 
language

● Easy to implement
● Hard for programmer to reason about
● Think PyTorch / Tensorflow / (old?) Halide

Shallow Embedding

● DSL is truly part of the host language
● Better programming experience
● Cannot reason about DSL directly
● One either needs a partial evaluator in the 

host language, or one needs to 
significantly modify the host language 
compiler

● Think SYCL / Hetero-C++



Embedding DSLs in Impala



AnyDSL



Putting it all together





Implement DSL as a library, not a new compiler



Preventing divergence

● Program author must annotate where 
specialization can occur

● @ sign denotes a set of filters
● A set of filters can be applied to an entire 

function, or individually per parameter
● ?n evaluates to true if n is constant
● $n yields n, but isn’t constant
● Can contain arbitrary expression (n < 5)
● No @ is sugar for @(false), just an @ is 

sugar for @(true)



Accelerator support



Is it fast?



Related work and thoughts…









Metaprogramming vs. Schedules



Accelerator support?

● GPUs are still generally programmable
● Ray tracing cores?
● DL accelerators?
● HDC accelerators?
● Dynamic scheduling?


