The Sea of Nodes

Russel Arbore

A Simple Graph-Based Intermediate Representation

Cliff Click
cliffc@hpl.hp.com

Abstract

We present a graph-based intermediate representation
(IR) with simple semantics and a low-memory-cost C++
implementation. The IR uses a directed graph with la-
beled vertices and ordered inputs but unordered outputs.
Vertices are labeled with opcodes, edges are unlabeled.
We represent the CFG and basic blocks with the same
vertex and edge structures. Each opcode is defined by a
C++ class that encapsulates opcode-specific data and be-
havior. We use inheritance to abstract common opcode
behavior, allowing new opcodes to be easily defined from
old ones. The resulting IR is simple, fast and easy to use.

1. Introduction

Intermediate renresentations do not exist in a vac-

Michael Paleczny
mpal@cs.rice.edu

understand, and easy to extend. Our goal is a repre-
sentation that is simple and light weight while allowing
easy expression of fast optimizations.

This paper discusses the intermediate representa-
tion (IR) used in the research compiler implemented as
part of the author’s dissertation [8]. The parser that
builds this IR performs significant parse-time optimi-
zations, including building a form of Static Single As-
signment (SSA) at parse-time. Classic optimizations
such as Conditional Constant Propagation [23] and
Global Value Numbering [20] as well as a novel
global code motion algorithm [9] work well on the IR.
These topics are beyond the scope of this paper but are
covered in Click’s thesis.

The intermediate representation is a graph-based,

In the beginning®, there was CFG + SSA

%3:
define dso_local float @dot(ptr %0, ptr %1, 9 %4 = icmp sgt i32 %2, 0
%4 = icmp sgt 132 %) br i1 %4, label %5, label %7
0% L,
br i1 %4, label %5, label %7 T F
: ; preds gf
%6 = zext 132 %2 to i64 %5:
br label %9 >
2 %6 = zext i32 %2 to i64
br label %9
%8 = phi float [0.000000e+00, %:
ret float %
; preds

phi i64 [0, %5 1, [%17, %9]

phi float [0.000000e+00, %5], [%16, %9]

getelementptr inbounds float, ptr %0, 164 %10

load float, ptr %12, align 4

= getelementptr inbounds float, ptr %1, 164 %10

load float, ptr %14, align 4

tail call float @llvm.fmuladd.f32(float %13, %15, float %11)

add nuw nsw 164 %10, 1

icmp eq 164 %17, %6

%18, label ¢ label %9 %7

} 75
%8 = phi float [0.000000e+00, %3 1, [%16, %9]
ret float %8

declare float @llvm.fmuladd.f32(float, float, float)

CFG for 'dot’ function

<kind:root>
root

[rooted]
Y

<kind:pi-block>
--- start of nodes in pi-block ---
<kind:single-instruction>
%10 =phii64 [0, %51, [%17, %9]

<kind:single-instruction>
%17 = add nuw nsw i64 %10, 1
--- end of nodes in pi-block ---

[def-use]

def-use] [def-use]
A 4
<kind:single-instruction> <kind:single-instruction>
%12 = getelementptr inbounds float, ptr %0, i64 %10 %14 = getelementptr inbounds float, ptr %1, i64 %10

[def-use]

def-use]

<kind:pi-block>

--- start of nodes in pi-block ---
<kind:single-instruction>
%13 = load float, ptr %12, align 4

<kind:single-instruction>
%15 = load float, ptr %14, align 4
--- end of nodes in pi-block ---

[def-use]
\

<kind:pi-block>

--- start of nodes in pi-block ---
<kind:single-instruction>
%11 = phi float [0.000000e+00, %5 1, [%16, %9]

<kind:single-instruction>
%16 = tail call float @llvm.fmuladd.f32(float %13, float %15, float %11)
--- end of nodes in pi-block ---

DDG for 'dot.'

<kind:multi-instruction>
%18 = icmp eq 164 %17, %6
br i1 %18, label %.loopexit, label %9

%3:
%4 =icmp sgt i32 %2, 0
br i1 %4, label %5, label %7

T F

%5:
5-

%6 = zext i32 %2 to i64
br label %9

%7:
7-

“)08 = phi float [0.000000e+00, %3 1, [%16, %9]

ret float %8

CFG for 'dot' function

def-use]

oot>
root

rooted]

Y

<kind:pi-block>
--- start of nodes in pi-block ---
<kind:single-instruction>
%10 = phi i64[0, %5], [%17, %9]

<kind:single-instruction>
%17 = add nuw nsw i64 %10, 1
--- end of nodes in pi-block ---

[def-use]

[def-use]

<kind:single-instruction>
%12 = getelementptr inbounds float, ptr %0, i64 %10

<kind:single-instruction>

‘ %14 = getelementptr inbounds float, ptr %1, i64 %10

[def-use]

def-use]

<kind:pi-block>

--- start of nodes in pi-block ---
<kind:single-instruction>
%13 = load float, ptr %12, align 4

<kind:single-instruction>
%15 = load float, ptr %14, align 4
--- end of nodes in pi-block ---

[def-use]

<kind:pi-block>

--- start of nodes in pi-block -
<kind:single-instruction>
%11 = phi float [0.000000e+00, %5 1, [%16, %9]

<kind:single-instruction>
%16 = tail call float @llvm.fmuladd.f32(float %13, float %15, float %11)
--- end of nodes in pi-block ---

DDG for 'dot."

<kind:multi-instruction>
%18 =icmp eq 64 %17, %6
br i1 %18, label %.loopexit, label %9

START io initial data '

Start: ip := initial data X \
REGION ~I
PHI
\
\ \ ‘
\ \
\
i Y
\
. n V.V
loop: iy := ¢(lo, 2) \\ P
ip:= iy + 1 v
cc := test(i) |
branch eq loop cc | test '
‘ v
IF
PROJ | PROJ
i FALSE | TRUE

loop back control

V
loop exit control loop exit data

Figure 7 An example loop

B1:

Control ,
l predicate

\

cc = predicate IF
branch eq Bl
True False PROJECTION PROJECTION
TRUE FALSE
B2:

B1: REGION ' B2:l REGION '

Figure 5 Projections following an Ir Node

2.5 Compound Values: Memory and I/O

We treat memory like any other value, and call it
the STORE. The START node and a PROJECTION-
STORE node produce the initial STORE. LOAD nodes
take in a STORE and an address and produce a new
value. STORE nodes take in a STORE, an address, and
a value and produce a new STORE. PHI nodes merge
the STORE like other values. Figure 6 shows a sample
treatment of the STORE.

M=l /I Make some value
*ptrl :=x; // Store value to memory

y:=*ptr2; // Load some value
el // Use loaded value

Figure 6 Treatment of memory (STORE)

The lack of anti-dependences® is a two-edged
sword. Between STORE’s we allow LoAD nodes to
reorder. However, some valid schedules (serializations
of the graph) might overlap two STORES, requiring that
all of memory be copied. Our serialization algorithm
treats memory like a type of unique machine register
with infinite spill cost. The algorithm schedules the
code to avoid spills if possible, and for the STORE it
always succeeds.

This design of the STORE is very coarse. A better
design would break the global STORE into many
smaller, unrelated STORE’s. Every independent vari-
able or array would get its own STORE. Operations on
the separate STORE’s could proceed independently
from each other. We could also add some understand-
ing of pointers [7].

Memory-mapped /O (e.g., volatile in C++) is
treated like memory, except that both READ and
WRITE nodes produce a new I/O state. The extra de-
pendence (READs produce a new I/O state, while
LoADs do not produce a new STORE) completely se-
rializes I/O. At program exit, the I/O state is required,
however, the STORE is not required. Non-memory-
mapped I/O requires a subroutine call.

class Arena {

/I Arenas are linked lists of large chunks of heap

enum { size = 10000 }; /I Chunk size in bytes
Arena *next; // Next chunk
char bin[size]; /I This chunk
Arena(Arena *next) : next(next) {} /I New Arena, plug in at head of linked list
~Arena() { if(next) delete next; } // Recursively delete all chunks
1
class Node { /I Base Node class

static Arena *arena;

static char *hwm, *max, *old;
static void grow();

void *operator new(size_t x)

/I Arena to store nodes in

/I High water mark, limit in Arena
/I Grow Arena size

/I Allocate a new Node of given size

{ if(hwm+x > max) Node::grow(); old := hwm; hwm := hwm+x; return old; }

void operator delete(void *ptr)
{ if(ptr = old) hwm := old; }
b
Arena *Node::arena := NULL;
char *Node::hwm := NULL;
char *Node::max := NULL;
void Node::grow()
{
arena := new Arena(arena);
hwm := &arena—bin[0];

/I Delete a Node
/I Check for deleting recently allocated space

/I No initial Arena

/I First allocation attempt fails
/I'... and makes initial Arena

/I Get more memory in the Arena

/I Grow the arena
/I Update the high water mark

max := &arena—bin[Arena::size]; // Cache the end of the chunk as well

}

Figure 14 Fast allocation with arenas

