
You made a mistake
today

PHP
And from now on, you will see me in your nightmares…

MISERY

GUILTY
PLEASRE

Client Server

Form, click, etc.

- Extract HTTP contents
- Do something

HTTP Request

HTML

Client Server

Form, click, etc.
- Extract HTTP
 contents
- Do something

HTTP Req.

HTML

DB

Let me tell you a story…

Escaping MySQL Strings

"SELECT * FROM users WHERE user='" . $_POST[username] . "' AND
password='" . $_POST[password] . "'";

"SELECT * FROM users WHERE user='" .
mysql_real_escape_string($_POST[username]) . "' AND password='" .
mysql_real_escape_string($_POST[password]) . "'";

PHP: A fractal of bad design

https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/

Decoding JSON

Substring Search

Substring Search

Substring Search

Substring Search

“If you use false as an index, or do much of anything with it except
compare with ===, PHP will silently convert it to 0 for you. Your program
will not blow up; it will, instead, do the wrong thing with no warning, unless
you remember to include the right boilerplate around every place you use
strpos”

Equality and Comparison

=== compares values and type… except with objects,
where === is only true if both operands are actually
the same object! For objects, == compares both value
(of every attribute) and type, which is what === does
for every other type.

Equality and Comparison

=== compares values and type… except with objects,
where === is only true if both operands are actually
the same object! For objects, == compares both value
(of every attribute) and type, which is what === does
for every other type.

For a more type-safe ==, we have ===. For a more
type-safe <, we have… nothing. "123" < "0124",
always, no matter what you do. Casting doesn’t help
either

Equality and Comparison

=== compares values and type… except with objects,
where === is only true if both operands are actually
the same object! For objects, == compares both value
(of every attribute) and type, which is what === does
for every other type.

For a more type-safe ==, we have ===. For a more
type-safe <, we have… nothing. "123" < "0124",
always, no matter what you do. Casting doesn’t help
either

NULL < -1, and NULL == 0

Indexing

[] can be used on any variable, not just strings and

arrays. It returns null and issues no warning.

Indexing

[] can be used on any variable, not just strings and

arrays. It returns null and issues no warning.

You can also use {}

Modules (jk)

include() and friends are basically C’s

#include: they dump another source file

into yours. There is no module system, even

for PHP code.

Error Handling

● Trying to access a non-existent object
property, i.e., $foo->x, is a warning.

● But trying to access a non-existent
class construct, i.e., $foo::x, is a fatal
error.

Error Handling

At least a dozen functions for getting the
last error from a particular subsystem (see
below), even though PHP has had
exceptions for eight years.

Error Handling

http://www.youtube.com/watch?v=nmD1Q4FsXCc&t=683

Error Handling

Btw, PHP doesn’t have stack traces. So,
good luck if you’re trying to figure out the
source of an error.

A Quick Joke

(int) is a single token.

Constants

PHP has the equivalent
of #define!

Constants

PHP has the equivalent
of #define!

<?php

define('MAXNUM', 1000);

for ($i = 2; $i < MAXNUM; ++$i) {

...

}

– John Regehr

Easter Egg: Printing

PHP provides… a bunch
of ways to print.

echo "Test
";

Easter Egg: Printing

PHP provides… a bunch
of ways to print.

echo "Test
";

print "Test
";

Easter Egg: Printing

PHP provides… a bunch
of ways to print.

echo "Test
";

print "Test
";

print("Test
");

Easter Egg: Printing

PHP provides… a bunch
of ways to print.

echo "Test
";

print "Test
";

print("Test
");

$city = "Chicago";

printf("The city: %s
" , $city);

Easter Egg: Printing

PHP provides… a bunch
of ways to print.

echo "Test
";

print "Test
";

print("Test
");

$city = "Chicago";

printf("The city: %s
" , $city);

$foo['a'] = "blah";

$foo['b'] = "bar";

print_r($foo);

