You made a mistake
today

PHP

And from now on, you will see me in your nightmares..

Client @rveD

Form, click, etc. HTTP Request

- Extract HTTP contents

/ - Do something

HTML

Client

Form, click, etc.

Server
HTTP Req.
\\\\;
- Extract HTTP
contents

HTML

Let me tell you a story..

Escaping MySQL Strings

mysql_escape_string

(PHP & >= 4.0.3, PHP 5)
mysql_escape_string — Escapes a string for use in a mysql_query

mysql_escape_string(string $unescaped_string): string

mysql_real_escape_string

mysql_real_escape_string(string $unescaped_string, resource $link_identifier = NULL): string

mysql_real_escape_string

mysql_real_escape_string(string $unescaped_string ,resource $link_iden® NULL): string

mysql_real_escape_string

mysql_real_escape_string(string $unescaped_string Cresource $link_iden® NULL): string

link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect() is
assumed. If no such link is found, it will try to create one as if mysqgl_connect() had been called with no
arguments. If no connection is found or established, an E_WARNING level error is generated.

Description

Object-oriented style

public mysqli::real_escape_string(string $string): string

Procedural style

mysqli_real_escape_string(mysqli $mysql, string $string): string

"SELECT * FROM users WHERE user='" . $_POST[username] . "' AND
password="" . $_POST[password] . "'";

"SELECT * FROM users WHERE user=""
mysql_real_escape_string($_POST[username]) . "' AND password=

mysql_real_escape_string($_POST[password]) . :

PHP: A fractal of bad design

https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/

Decoding JSON

» json decode returns null for invalid input, even though null is also a perfectly valid
object for JSON to decode to—this function is completely unreliable unless you also
call json last error everytime you use it.

Substring Search

strpos(string $haystack, string $needle, int $offset = 0): int|false

Find the numeric position of the first occurrence of needle in the haystack string.

Substring Search

strpos(string $haystack, string $needle, int $offset = 0)

Find the numeric position of the first occurrence of needle in the haystack string.

Substring Search

strpos(string $haystack, string $needle, int $offset = 0)

Find the numeric position of the first occurrence of needle in the haystack string.

Warning This function may return Boolean false, but may also return a non-Boolean value which evaluates
to false. Please read the section on Booleans for more information. Use the === operator for testing the
return value of this function.

Substring Search

strpos(string $haystack, string $needle, int $offset = 0)

Find the numeric position of the first occurrence of needle in the haystack string.

“If you use false as an index, or do much of anything with it except
compare with ===, PHP will silently convert it to 8 for you. Your program
will not blow up; it will, instead, do the wrong thing with no warning, unless
you remember to include the right boilerplate around every place you use

strpos”

Equality and Comparison

=== compares values and type... except with objects,
where === is only true if both operands are actually
the same object! For objects, == compares both value
(of every attribute) and type, which is what === does
for every other type.

Equality and Comparison

=== compares values and type... except with objects,
where === is only true if both operands are actually
the same object! For objects, == compares both value
(of every attribute) and type, which is what === does
for every other type.

For a more type-safe ==, we have ===. For a more
type-safe <, we have... nothing. "123" < "0124",
always, no matter what you do. Casting doesn’t help
either

Equality and Comparison

=== compares values and type... except with objects,
where === is only true if both operands are actually
the same object! For objects, == compares both value
(of every attribute) and type, which is what === does
for every other type.

For a more type-safe ==, we have ===. For a more
type-safe <, we have... nothing. "123" < "0124",
always, no matter what you do. Casting doesn’t help
either

NULL < -1,andNULL == ©

Indexing

[] can be used on any variable, not just strings and

arrays. It returns null and issues no warning.

Indexing

[] can be used on any variable, not just strings and

arrays. It returns null and issues no warning.

You can also use {}

Modules (jk)

include() and friends are basically C’s
#include: they dump another source file
into yours. There is no module system, even
for PHP code.

Error Handling

e Trying to access a non-existent object
property, i.e., $foo->x, is a warning.

e But trying to access a non-existent
class construct, i.e., $foo:x, is a fatal
error.

Error Handling

At least a dozen functions for getting the
last error from a particular subsystem (see

below), even though PHP has had

exceptions for eight years.

Error Handling

http://www.youtube.com/watch?v=nmD1Q4FsXCc&t=683

Error Handling

Btw, PHP doesn’t have stack traces. So,
good luck if you're trying to figure out the
source of an error.

A Quick Joke

(int) is a single token.

Constants

PHP has the equivalent
of #definel

Constants

PHP has the equivalent
of #definel

define ('"MAXNUM', 1000) ;

for ($i = 2; $i < MAXNUM; ++$i) {

If you report an undefined behavior bug, a common reaction from software
developers is “So what? Our code works just fine.” As a random example, here is
a discussion | had with Rasmus Lerdorf about five years ago about some UBs in
the PHP interpreter. One might point out that it wasn't a very mature exchange
but I wasn't even 40 yet at the time. (Earlier | had an example here from
OpenSSL but this one is more suitable.)

- John Regehr

Easter Egg: Printing

PHP provides... a bunch

of ways to print.

echo "Test
";

Easter Egg: Printing

PHP provides... a bunch

of ways to print.

echo "Test
";

print "Test
";

Easter Egg: Printing

PHP provides... a bunch

of ways to print.

echo "Test
";

print "Test
";

print ("Test
");

Easter Egg: Printing

PHP provides... a bunch

of ways to print.

echo "Test
";
print "Test
";
print ("Test
");

$city = "Chicago";

printf ("The city: %s
", Scity):;

Easter Egg: Printing

PHP provides... a bunch

of ways to print.

echo "Test
";

print "Test
";

print ("Test
");

Scity = "Chicago";

printf ("The city: %s
", S$Scity);
Sfoo['a'] = "blah";

Sfoo['b'] = "bar";

print r ($foo);

