A Tour of New Systems
Languages

Russel Arbore

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

e The standard is 1448 pages long

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

e The standard is 1448 pages long
e Too many language features

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

e The standard is 1448 pages long

e Too many language features
o “friend"?2??7?

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

e The standard is 1448 pages long

e Too many language features
o “friend"?2??7?

e Super unsafe

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

e The standard is 1448 pages long

e Too many language features
o “friend"?2??7?

e Super unsafe
e Not typesafe

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

e The standard is 1448 pages long

e Too many language features
o “friend"?2??7?

e Super unsafe
e Not typesafe

e \Very slow compile times

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

The standard is 1448 pages long

Too many language features
o “friend’?????

Super unsafe

Not typesafe

Very slow compile times

Bad tooling

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

e The standard is not open - technically, you're supposed to purchase it
o https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

The standard is 1448 pages long

Too many language features
o “friend’?????

Super unsafe

Not typesafe

Very slow compile times

Bad tooling

Every other language talked about improves on some
of these components.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

®

Started in 2006

Introduced the borrow checker
Type safe

Many functional patterns
Cargo

®

Started in 2006

Introduced the borrow checker
Type safe

Many functional patterns
Cargo

Slow compile times

“Hard to program”

Types can get gnarly

o Arc<Mutex<...>> spam
Not simple
Inspired many other new systems languages

V4

Started in 2016
Simple
o Control flow / memory allocations are always explicit
Comptime
Works alongside C/C++
o zig build (libclang to compile C/C++)
Friendly to embedded / freestanding environments

V4

Started in 2016
Simple
o Control flow / memory allocations are always explicit
Comptime
Works alongside C/C++
o zig build (libclang to compile C/C++)
Friendly to embedded / freestanding environments

Same memory guarantees as C (¢2)
o -Debug and ReleaseSafe help

If Rust is a C++ replacement, Zig is a C replacement
Development seems very pragmatic

The world's fastest
financial accounting
database

Not to mention the smallest and toughest. An incredible storage fault
model. TigerBeetle is the system of record for the next generation of
financial services.

Read the code >

The world's fastest

fina

Performance

\ Orders of magnitude more
Natizipensan ey N s performance with room to

model. TigerBeetle i

financial services.
=P spare.

Faster than a generic in-memory database but with replicated persistence
for every transaction, zero deserialization with cache line aligned data

structures, zero copy with Direct 1/O, zero syscalls with io_uring, and

static allocation of memory (and storage). More performance reduces
cost and leaves a large margin of safety to absorb the unexpected.
TigerBeetle is ludicrously fast with a small footprint to boot. Why big iron
when you can beetle?

1000x 50% 50% 20%

faster than ad hoc balance more efficient than a one-phase more write availability in the smaller clusters with flexible

tracking ledger critical path quorums

4

Attempting to summarize,

© Rust is about compositional safety, it’s a more scalable language than Scala.

o Zig is about perfection. It is a very sharp, dangerous, but, ultimately, more flexible tool.

https://matklad.qithub.io/2023/03/26/zig-and-rust.html

https://www.scattered-thoughts.net/writing/assorted-thoughts-on-zig-and-rust/

https://matklad.github.io/2023/03/26/zig-and-rust.html
https://www.scattered-thoughts.net/writing/assorted-thoughts-on-zig-and-rust/

Started in 2014
Created by Jonathan Blow
Lots of control of memory layout

Powerful metaprogramming system
o Macros can operate on Jai AST

Fast compile times (~100k-200k LOC/s)
Simple build system

o jai main.jai
Standard libraries for graphics / audio / assets

Started in 2014
Created by Jonathan Blow
Lots of control of memory layout

Powerful metaprogramming system
o Macros can operate on Jai AST

Fast compile times (~100k-200k LOC/s)
Simple build system
o jai main.jai
Standard libraries for graphics / audio / assets
Compiler isn’t open
Same memory guarantees as C (72)
Geared towards performance-critical application development

https://www.youtube.com/watch?v=THI9VCN6UkyQ&list=PL mV512fxaiCKfxMBrNs
U1kgKJXD3PkyxO

A Programming Language for Games
Jonathan Blow

Ideas about a new programming language for games. + 1:55:24

A Programming Language for Games, talk #2 + 1:30:26

VIEW FULL PLAYLIST

70 videos

https://www.youtube.com/watch?v=TH9VCN6UkyQ&list=PLmV5I2fxaiCKfxMBrNsU1kgKJXD3PkyxO
https://www.youtube.com/watch?v=TH9VCN6UkyQ&list=PLmV5I2fxaiCKfxMBrNsU1kgKJXD3PkyxO

e Started in 2016
e Created out of frustration with C++

e Simple and minimal
o Orthogonality - one way to write something
o Small language standard

e Data oriented
e Defer

e Many pragmatic choices
o Built-in dynamic array, UTF-8 string, map, context, allocators

e Started in 2016
e Created out of frustration with C++

e Simple and minimal

o Orthogonality - one way to write something
o Small language standard

e Data oriented
e Defer

e Many pragmatic choices
o Built-in dynamic array, UTF-8 string, map, context, allocators

e Even more minimal than Zig
e Same memory guarantees as C (#2)

Odin in Production

JangaFX are the creators of the 3D animation software EmberGen written fullyin Odin.

EmberGen is a real-time volumetric fluid simulator that can instantly simulate, render,
and export flipbooks, image sequences, and VDB volumes. With EmberGen, you can
create anything from fire and smoke, to explosions and magic wisps. EmberGen gives you
the creative freedom to iterate on your simulations in a few milliseconds instead of hours.

Through EmberGen, Odin runs in production among the giants of the games and film
industries: Bethesda, CAPCOM, Codemasters, THQNordic, Warner Bros, Weta Digital, and

many others.

J Janga - Ember

\'

Open sourced in 2019

No undefined behavior

Sum types

Zero dependency binaries

Can translate C to V automatically

Fast compile times (as high as 500k LOC/s)

\'

Open sourced in 2019

No undefined behavior

Sum types

Zero dependency binaries

Can translate C to V automatically

Fast compile times (as high as 500k LOC/s)
GC

o Butis optional
Memory guarantees?

\'

https://xeiaso.net/blog/v-vaporware-2019-06-23 (from 2019)
Compile time was exaggerated

Compiler is a dynamically linked binary

Compiler and generated code leak memory

https://xeiaso.net/blog/v-vaporware-2019-06-23

\'

https://xeiaso.net/blog/v-vaporware-2019-06-23 (from 2019)
Compile time was exaggerated

Compiler is a dynamically linked binary

Compiler and generated code leak memory
https://mawfig.github.io/2022/06/18/v-lang-in-2022.html#summary (from 2022)
Can create null pointers

Backend is C, and can generate C w/ undefined behavior
Array bounds checking is not robust

Immutability is easily bypassed

“Pure” functions are meaningless

Doesn’t prevent global variables

Performance claims don’t hold up

V compiler is much slower than advertised

V’s “autofree” appears to be vaporware

https://xeiaso.net/blog/v-vaporware-2019-06-23
https://mawfig.github.io/2022/06/18/v-lang-in-2022.html#summary

e Simple

e Mutable Value Semantics
o Stronger theoretical standing

e [ast

Simple
Mutable Value Semantics
o Stronger theoretical standing

Fast

Incomplete as of now
o Plans for generics, stdlib, etc.
Two papers describing MVS:

o Implementation Strategies for Mutable Value Semantics
o Native Implementation of Mutable Value Semantics
o Used to be called “Val”

e Created by Evan Ovadia

o “there's at least eleven [memory management] methods”

Fast

Memory safety through generational references
Memory safety through region borrow checking
Memory safety through single ownership

e Created by Evan Ovadia

o “there's at least eleven [memory management] methods”

Fast

Memory safety through generational references

Memory safety through region borrow checking

Memory safety through single ownership

Not as simple

Memory safety is not never will dereference a bad reference - it's there’s no
undefined behavior when dereferencing a bad reference

e htitps://verdagon.dev/blog/generational-references

e Using generational references, dereferencing a dead reference is defined to
cause a program crash

e Stack objects are singly owned by containing stack frame - can remove GR
checks for stack objects

e Heap objects have a single owning pointer - if function owns a heap object,
can remove GR check

e Inside “pure” functions, GR checks can be eliminated if passed objects are
“prechecked”, thanks to region borrow checking

https://verdagon.dev/blog/generational-references

58] s

An ML

Same performance characteristics as C
Same memory control as C, and...
Linear + refinement type system verifies safety at compile time

58] s

An ML

Same performance characteristics as C

Same memory control as C, and...

Linear + refinement type system verifies safety at compile time
Bats*** crazy syntax / language in general

Research software

Steep learning curve

ATS

"A (Not So Gentle) Introduction To Systems Programming In ATS" by Aditya Siram - mpv x

o Safe swap

extern fun swap
{a : t@ype}
{11: addr | 11 > null}
{12: addr | 12 > null}
(a@11 ,a@12 | i : ptr 11, j : ptr 12, s: sizeof_t a):
(a @11, a @ 12 | void) = "ext#swap" Stramge

Sept 28-30, 2017

thestrangeloop.com

Aditya Siram A (Not So Gentle) Introduction To Syste September 29, 2017 42 / 154

Should you use any of these?

Should you use any of these?

B

Should you use any of these?

https://matklad.qithub.io/2023/03/26/zig-and-rust.html

https://matklad.github.io/2023/03/26/zig-and-rust.html

Interesting ldeas

o

Vaporware?

ki Vv

There are many more...

D

Nim
Austral
Jakt
Hare
Myrddin
Lobster
Compis
Cone

There are many more...

D

Nim
Austral
Jakt
Hare
Myrddin
Lobster
Compis
Cone

