
A Tour of New Systems
Languages

Russel Arbore

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long
● Too many language features

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long
● Too many language features

○ “friend”?????

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long
● Too many language features

○ “friend”?????
● Super unsafe

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long
● Too many language features

○ “friend”?????
● Super unsafe
● Not typesafe

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long
● Too many language features

○ “friend”?????
● Super unsafe
● Not typesafe
● Very slow compile times

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long
● Too many language features

○ “friend”?????
● Super unsafe
● Not typesafe
● Very slow compile times
● Bad tooling

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Obligatory s***ing on C++

● The standard is not open - technically, you’re supposed to purchase it
○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● The standard is 1448 pages long
● Too many language features

○ “friend”?????
● Super unsafe
● Not typesafe
● Very slow compile times
● Bad tooling

Every other language talked about improves on some
of these components.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

● Started in 2006
● Introduced the borrow checker
● Type safe
● Many functional patterns
● Cargo

● Started in 2006
● Introduced the borrow checker
● Type safe
● Many functional patterns
● Cargo
● Slow compile times
● “Hard to program”
● Types can get gnarly

○ Arc<Mutex<...>> spam
● Not simple
● Inspired many other new systems languages

● Started in 2016
● Simple

○ Control flow / memory allocations are always explicit
● Comptime
● Works alongside C/C++

○ zig build (libclang to compile C/C++)
● Friendly to embedded / freestanding environments

● Started in 2016
● Simple

○ Control flow / memory allocations are always explicit
● Comptime
● Works alongside C/C++

○ zig build (libclang to compile C/C++)
● Friendly to embedded / freestanding environments
● Same memory guarantees as C (🤣)

○ -Debug and ReleaseSafe help
● If Rust is a C++ replacement, Zig is a C replacement
● Development seems very pragmatic

https://matklad.github.io/2023/03/26/zig-and-rust.html

https://www.scattered-thoughts.net/writing/assorted-thoughts-on-zig-and-rust/

https://matklad.github.io/2023/03/26/zig-and-rust.html
https://www.scattered-thoughts.net/writing/assorted-thoughts-on-zig-and-rust/

● Started in 2014
● Created by Jonathan Blow
● Lots of control of memory layout
● Powerful metaprogramming system

○ Macros can operate on Jai AST
● Fast compile times (~100k-200k LOC/s)
● Simple build system

○ jai main.jai
● Standard libraries for graphics / audio / assets

● Started in 2014
● Created by Jonathan Blow
● Lots of control of memory layout
● Powerful metaprogramming system

○ Macros can operate on Jai AST
● Fast compile times (~100k-200k LOC/s)
● Simple build system

○ jai main.jai
● Standard libraries for graphics / audio / assets
● Compiler isn’t open
● Same memory guarantees as C (🤣)
● Geared towards performance-critical application development

https://www.youtube.com/watch?v=TH9VCN6UkyQ&list=PLmV5I2fxaiCKfxMBrNs
U1kgKJXD3PkyxO

https://www.youtube.com/watch?v=TH9VCN6UkyQ&list=PLmV5I2fxaiCKfxMBrNsU1kgKJXD3PkyxO
https://www.youtube.com/watch?v=TH9VCN6UkyQ&list=PLmV5I2fxaiCKfxMBrNsU1kgKJXD3PkyxO

● Started in 2016
● Created out of frustration with C++
● Simple and minimal

○ Orthogonality - one way to write something
○ Small language standard

● Data oriented
● Defer
● Many pragmatic choices

○ Built-in dynamic array, UTF-8 string, map, context, allocators

● Started in 2016
● Created out of frustration with C++
● Simple and minimal

○ Orthogonality - one way to write something
○ Small language standard

● Data oriented
● Defer
● Many pragmatic choices

○ Built-in dynamic array, UTF-8 string, map, context, allocators
● Even more minimal than Zig
● Same memory guarantees as C (🤣)

● Open sourced in 2019
● No undefined behavior
● Sum types
● Zero dependency binaries
● Can translate C to V automatically
● Fast compile times (as high as 500k LOC/s)

● Open sourced in 2019
● No undefined behavior
● Sum types
● Zero dependency binaries
● Can translate C to V automatically
● Fast compile times (as high as 500k LOC/s)
● GC

○ But is optional
● Memory guarantees?

● https://xeiaso.net/blog/v-vaporware-2019-06-23 (from 2019)
● Compile time was exaggerated
● Compiler is a dynamically linked binary
● Compiler and generated code leak memory

https://xeiaso.net/blog/v-vaporware-2019-06-23

● https://xeiaso.net/blog/v-vaporware-2019-06-23 (from 2019)
● Compile time was exaggerated
● Compiler is a dynamically linked binary
● Compiler and generated code leak memory
● https://mawfig.github.io/2022/06/18/v-lang-in-2022.html#summary (from 2022)
● Can create null pointers
● Backend is C, and can generate C w/ undefined behavior
● Array bounds checking is not robust
● Immutability is easily bypassed
● “Pure” functions are meaningless
● Doesn’t prevent global variables
● Performance claims don’t hold up
● V compiler is much slower than advertised
● V’s “autofree” appears to be vaporware

https://xeiaso.net/blog/v-vaporware-2019-06-23
https://mawfig.github.io/2022/06/18/v-lang-in-2022.html#summary

● Simple
● Mutable Value Semantics

○ Stronger theoretical standing
● Fast

● Simple
● Mutable Value Semantics

○ Stronger theoretical standing
● Fast
● Incomplete as of now

○ Plans for generics, stdlib, etc.
● Two papers describing MVS:

○ Implementation Strategies for Mutable Value Semantics
○ Native Implementation of Mutable Value Semantics
○ Used to be called “Val”

● Created by Evan Ovadia
○ “there's at least eleven [memory management] methods”

● Fast
● Memory safety through generational references
● Memory safety through region borrow checking
● Memory safety through single ownership

● Created by Evan Ovadia
○ “there's at least eleven [memory management] methods”

● Fast
● Memory safety through generational references
● Memory safety through region borrow checking
● Memory safety through single ownership
● Not as simple
● Memory safety is not never will dereference a bad reference - it’s there’s no

undefined behavior when dereferencing a bad reference

● https://verdagon.dev/blog/generational-references
● Using generational references, dereferencing a dead reference is defined to

cause a program crash
● Stack objects are singly owned by containing stack frame - can remove GR

checks for stack objects
● Heap objects have a single owning pointer - if function owns a heap object,

can remove GR check
● Inside “pure” functions, GR checks can be eliminated if passed objects are

“prechecked”, thanks to region borrow checking

https://verdagon.dev/blog/generational-references

● An ML
● Same performance characteristics as C
● Same memory control as C, and…
● Linear + refinement type system verifies safety at compile time

ATS

● An ML
● Same performance characteristics as C
● Same memory control as C, and…
● Linear + refinement type system verifies safety at compile time
● Bats*** crazy syntax / language in general
● Research software
● Steep learning curve

ATS

ATS

Should you use any of these?

Should you use any of these?

Should you use any of these?

https://matklad.github.io/2023/03/26/zig-and-rust.html

https://matklad.github.io/2023/03/26/zig-and-rust.html

Interesting Ideas

Vaporware?

There are many more…

● D
● Nim
● Austral
● Jakt
● Hare
● Myrddin
● Lobster
● Compis
● Cone

There are many more…

● D
● Nim
● Austral
● Jakt
● Hare
● Myrddin
● Lobster
● Compis
● Cone

